ESS Science in Everyday Life

Research with neutrons gives us knowledge that improves our everyday lives, our health and our environment.

Neutron science is the science of everyday life. It is important for the development of new and better computer chips, cosmetics, detergents, textiles, paints, fuels, drugs, batteries and plastics. Industrial drivers such as fuel cells, superconductors, innovative structural engineering, climate, transportation and food technologies, pharmaceuticals, medical devices and clean energy, are all dependent on advances in the capacity and capability of the science of neutron imaging. The many thousands of products created and improved through material science using neutrons are essential to our basic quality of life, and our economic growth.

In-depth scientific information can be found at:
At the same time, research conducted using neutrons is puzzling out some of the most longstanding and complex problems that science and medicine have ever confronted. Among these are the as yet unknown mechanisms of how DNA sustains life at the molecular level, and the precise position, structure and function of the proteins that determine its structure. The solutions to some of the most daunting life science challenges of the next century rely on the superior mapping and three-dimensional modeling of proteins that the more powerful and sophisticated neutron imaging at ESS will provide.
 
Using the technology at ESS, the next generation of neutron scientists will advance ongoing investigations into the boundless complexities and unknowns of the human brain, its neural networks, and the workings of memory. Such studies will further the rapid progress of applying these discoveries to the nano-circuitry of machines, and advancing the increasingly sophisticated science of artificial intelligence—a field that, as it happens, is likewise dependent on improvements in neutron imaging.
 
Medicine & Life ScienceTechnology for Energy & EnvironmentNew & Smart MaterialsEveryday Chemistry
The work that will be advanced at ESS has implications even for some of the most fundamental dilemmas in physics and philosophy. Promising investigations into the structure and origin of the universe, and others attempting to reconcile incompatible, and yet functional, theories of gravity and quantum physics, suggest the possibility of breakthroughs in human knowledge that go beyond our wildest imaginings. ESS is an essential investment in the future health of the Europe's people, and society.
 

Medicine and Life Science

 

Understanding how proteins, enzymes and other biological material work on the molecular and atomic level is one of the keys to understanding the mysteries of life and the body. Neutrons are very well suited for studying the dynamics of individual atoms and molecules.

Research using neutrons is particularly suitable when sampling sensitive materials, such as living cells, which are easily damaged when other measurement techniques are used. Neutrons is also the only method with which the researcher can study individual hydrogen atoms, which play a particularly important role in biological systems.

Dramatic improvements for the study of organic molecules

The special instruments at ESS promise many times improvement of measuring performance compared with what is possible today. This dramatic improvement will be particularly important for the study of complex molecules, such as organic molecules.
 
With neutrons, researchers are able to study the building blocks of the human body, particularly single hydrogen atoms, which play a highly important role. Thus researchers can gain new insights about:

  • The DNA molecules and proteins thatcontrol aging and cancer
  • How the skeleton is built up duringchildhood and how osteoporosis cause it to deteriorate, thereby creating remedies for skeleton diseases and changes caused by the aging process
  • Organ and bodily functions like muscles, teeth and digestion
  • How to construct better medical implants that are more durable and entirely  bio-compatible
  • Biological materials with complex structures, such as blood and cell membranes
  • Gene therapy
  • Bio sensors
  • Carbohydrates and cellulose

New knowledge in these areas makes it possible to develop new techniques and more effective treatments and medicines.

More efficient medicines with fewer side effects

How are medications received by the body? How do they work inside the body?
 
By studying the proteins and enzymes that create various diseases, researchers can contribute to the development of new medicines and treatments.
Pharmaceutical researchers need to obtain a good understanding of the proteins found in the human body, since they act as receptors for the molecules of the medication. In other words, the proteins are the ”key holes” that the medicines – the keys – shall ”unlock.”
 
Therefore, if scientists can study the details of different proteins in the human body, they can more easily create medicines that match those proteins.
 
Today, scientists have, by means of neutrons and X-ray experiments, started the journey towards a cure for Alzheimer’s, through studying the structure in those different substances, which affect the brain and its nerves. Neutrons have also helped researchers to create drug delivery systems that are time-released in specific parts of the body, create isotopes used in hospitals and find natural antibiotics for the treatment of multi-resistant bacteria.

In-depth scientific information can be found at:

 The high-performance that ESS can offer will be important to efficient structure based medicine development. With brighter neutron beams, scientists will beable to study enzymes and proteins in their natural environment and with greater precision, and will also be able to study of biological systems andprocesses that change over time. Researchers will have a new powerful tool to study the properties and functions of proteins and cell membranes, and how they integrate with, for example, medicines.

Food technology - Enzymes speed up processes

In order to develop new, healthier foods, without affecting the flavour, neutrons are used to study enzyme structures and what happens during chemical processes.

 

Technology for Energy and Environment

Neutrons enable the potential for developing more environmentally friendly materials and processes. From better plastics to carbon capturing materials, the road to a better future may be driven with hydrogen fuels developed with neutron science.

Below are some examples of technology for energy and environment, areas that benefit from research using neutrons:

Fuels cells driven by hydrogen

The search for new technology to transition to a future economy with significantly less carbon dioxide emissions than today a great challeng of our time. Here, hydrogen gas plays a central role. Neutrons  sources like ESS are the best tools researchers have studying elusive hydrogen-based structures in detail.

Fuel-cells are central to the development of the future hydrogen economy. Fuel-cells are a type of “battery”, which must be continuously filled with hydrogen gas in order to function. When hydrogen gas and oxygen react, this is converted into electricity and heat. The only exhaust gas is pure water. Presently, fuel-cells are being developed for many different purposes from the heating of housing and operation of vehicles, to operating laptops and telephones.

Solar power

Neutrons can examine and optimise new materials such as thin layers of polymers used for photovoltaics. This is a part of the effort to develop cost-effective, reliable, efficient and environmentally friendly solar power.

Fuels and catalysts

At the ESS sister facility in the USA, research is being conducted to extract ethanol from cellulose rich materials like grass and agricultural waste. Today ethanol for environmentally friendly vehicles is extracted mainly from cereals like corn, which cause competition for production intended as food. The constructions of tomorrow will build upon knowledge of the properties of materials on the atomic level.

Better batteries

Telephone batteries which last longer and can be charged many more times are one possibility. With neutrons it is possible to follow how lithium ions migrate within the battery. Lithium is very difficult to see with today’s technology. But with a powerful neutron source it is possible to follow how the material’s structure changes when lithium is moved, and better materials can be produce.

In-depth scientific information can be found at:

Climate technology

Materials research at ESS can help in developing energy solutions that does less damage to the climate. Methane gas stored in ice in the shallow earth constitutes an enormous energy resource, but it is also powerful greenhouse gas. Today, scientists cannot analyse the crystal chemistry in the substances that contain the gas, but with the ESS, that will be possible.

 

New and Smart Materials

Why do mobile phone and computer technology develop so fast? Where do new, smart lighting technologies, such as LEDs, come from? New products full of advanced materials surround us in our everyday life. We often take these for granted, but behind each new material, there is much research.

As a result of fundamental research, scientists and industries have obtained knowledge which have improved many of the products in our daily lives, such as mobile phones, computers, lighting and nano-materials. In the future we will be able to tailor completely new materials according to the needs of different industries. In the future, we are sure to see materials with entirely new physical properties. New technologies and tools will make it possible to create custom materials based on industry requirements that have been unthinkable until now.

Some of the technologies that today’s scientists are particularly interested in are superconducting materials and stronger and lighter materials:

Superconducting materials

Superconducting materials allow transporting electricity without any losses, which means large energy gains. Researchwith neutrons is one of the most fundamental tools for understanding how magnetic and superconductive materials function. This in turn can help create solutions for improved electric conductivity, magnets that have new properties and technology for transportation that uses resources more efficiently.
 
The origin of superconductivity in so-called unconventional superconductors exhibiting the highest (and hence most interesting) superconducting transition temperatures is still unknown. Using neutrons it became clear that in thosematerials magnetism and superconductivity are interwoven. Understanding themicroscopic details better and eventually learning to create materials for room temperature superconducting would offer enormous macroeconomic savings.

Stronger and lighter materials

The grand challenges for today's materials – to be lighter, stronger, cheaper, more environmentally friendly – require extensive knowledge of the materials properties, beginning on the atomic scales. The information is needed by material scientists and developers to be able to tailor the properties of new materials for optimum performance. Neutron scattering techniques are unique for studying materials in that they help us not only understand the atomic structure of materials, but also as their behavior under many conditions resembling their application. This has helped to understand materials from a wide range of applications, from shampoos, turbine blades to magnetic storage materials.

LEDs in household lamps

Gallium nitride is a new material that was developed with the help of neutron research. It is most commonly used in LEDs (Light Emitting Diodes), e.g. the display for mobile telephones.

New research has developedmore powerful LEDs as a light source that is increasingly replacing the types of energy-saving lamps used today. This means huge benefits in the form of lower energy consumption, significantly longer burn time and less heat emission.

Faster and more powerful computers

Giant magnetoresistance (GMR) is one example of how basic research has been directly used in materials development. Research in this area was awarded with the 2007 Nobel Prize in Physics. You can already find an application of this knowledge in your own computer hard drive. GMR technology has accelerated the development of smaller, more powerful computers.

In-depth scientific information can be found at:

Neutrons are one of the most powerful tools used to study the magnetic properties of materials at the atomic level, thus providing the foundation for the development of GMR materials. In order for GMR to work, it is necessary to build structures out of materials that have the thickness of just a few atomic layers. Therefore, GMR is also seen as one very significant application from the promising area of nanotechnology.

 

Everyday Chemistry

Ordinary products like soap, face creams, detergents and lubricants are sometimes technological miracles. They are often comprised of complex liquids that can change their form and properties depending on how the molecules in the material are arranged.

Surface chemistry is an interdisciplinary science based on chemistry and physics. It plays an important role in materials research. It is possible to study such wide-ranging topics as the lubricants used in engineering, the design of pharmaceutical products, and paper products that have different types of characteristics. Common to each is that the surfaceproperties play a fundamental role in how the product will function. 

In order to make a liquid substance adhere to a material, it is necessary to understand the tiniest structures that exist within the material. For example, how can oil be distributed to protect the inside of an engine at both high and low temperatures, without just ”running off”?
 
The answer can be found by studying the molecules and customising these so-called complex liquids. In such studies, neutrons provide powerfultools. In particular, complex materials represent an area where ESS will have the greatest potential  to contribute with new discoveries. This technology is also used to help understand and develop other chemical products, particularly oil-based and water-based mixtures, such as creams and soap solutions.
 
A multitude of day-to-day products have complex structures, which are often explored with neutrons. The mechanics behind their properties can be used for developing other complex fluids and soft materials within the manufacturing industry. Today neutrons have contributed to the development of a large range of products, such as plastics, cleaners, cosmetics and synthetic fibres for the textile industry:

Paint - much more than just a colour

Paint must be thick enough to adhere to a paintbrush, yet thin enough to be spread over the intended surface. With neutrons, it is possible to develop materials with exactly these characteristics. Researchers can also study how to mix water and oil in order to design water-based paint that is water-repellent once it dries and can then stand exposure to wind, dirt and water for as much as 20 years.

Cleaning agents - cleaner clothes with the help of research

Cleaning and laundering are complicated chemical processes. Zeolite is a mineral that, among other things, provides the foundation of many detergents. One of its properties is its ability to soften hard water. With neutrons, it is possible to study how this material behaves and reacts in water. ESS can help bring about more environmentally friendly detergents that provide the same or better results.

Cosmetics – a science in itself

By looking at how molecules move and behave in a liquid, it is possible to develop creams and cosmetics with new and improved characteristics, such as more effective sunscreens and pain relief creams.

 

 

Content manager:

admin